Introducere

Măsurătorile de nivelment geometric și determinările cu tehnologia GNSS sunt efectuate de Centrul Național de Cartografie (CNC) la maregrafele din porturile Constanța, Mangalia și Sulina pe baza Protocolului de colaborare nr. 9875/17.05.2016 între Agenția Națională de Cadastru și Publicitate Imobiliară (ANCPI) și Institutul Național de Cercetare Dezvoltare pentru Fizica Pământului (INCDFP), precum și pe baza Protocolului de colaborare nr. 17632/15.09.2015 între Agenția Națională de Cadastru și Publicitate Imobiliară și Institutul Național de Cercetare – Dezvoltare Marină (INCDM) „Grigore Antipa”.
Înregistrările maregrafelor sunt legate la sistemul de altitudini normale Marea Neagră 1975 prin intermediul unor Reperi de Nivelment de Legătură (RNL) amplasati în imediata vecinătate a maregrafelor. Cu ajutorul determinărilor cu tehnologia GNSS, RNL se raportează la sistemul geocentric ETRS89 sau WGS84 și, prin urmare, oscilațiile nivelului mării vor fi definite într-o rețea de referință globală geocentrică, rezultând prin măsurători un nivel absolut mediu al mării în loc de un nivel relativ mediu al mării, acesta fiind corectat prin măsurători repetate pe baza determinării valorilor mișcărilor crustale verticale din zona maregrafelor.
Scopul proiectului
În țara noastră s-a adoptat pentru măsurătorile de nivelment sistem de altitudini normale Marea Neagră 1975 având ca referință cvasigeoidul. În condițiile schimbării nivelului mării ca rezultat al schimbării globale a climei, cvasigeoidul nu poate rămâne același pentru totdeauna. Când diferențele de altitudini raportate la nivele medii ale mării înregistrate la diferite maregrafe depăşesc o anumită valoare, se corectează și sistemul de altitudini pentru a se asigura corespondenţa acestuia cu condițiile actuale ale cvasigeoidului.
Determinările de nivelment și GNSS efectuate de CNC în zona maregrafelor contribuie la studiul variațiilor valorilor nivelului mediu al mării prin conectarea acestor măsurători la sistemul de altitudini normale Marea Neagră 1975, precum și la sistemele de referință europene EUREF și EUVN.
Obiectivele proiectului
Pentru realizarea datelor de schimb din cadrul protocoalelor dintre ANCPI și INCDFP și dintre ANCPI și INCDM, CNC efectueaza măsurători de nivelment de precizie și determinări cu tehnologia GNSS pentru estimarea modificărilor curente ale terenului la reperele de nivelment de legătură (RNL) și pentru urmărirea și conectarea înregistrărilor maregrafelor la un sistem de referință stabil (sistemul geocentric ETRS89). Pentru atingerea scopurilor menționate anterior, CNC desfășoară următoarele activități:
- Asigurarea legăturii RNL, prin nivelment geometric, cu senzorul maregrafului, pe baza suportului oferit de INCDFP și INCDM, precum și conectarea înregistrărilor nivelului mării cu sistemul de altitudini Marea Neagră 1975 pentru monitorizarea modificărilor cvasigeoidului;
- Efectuarea de măsurători de nivelment geometric repetate anual în linia de nivelment locală care include RNL de lângă maregraf și conectarea liniei de nivelment locale cu rețeaua de nivelment de stat pentru determinarea unor eventuale modificări în înălțime a RNL din cauza mișcărilor scoarței terestre;
- Asigurarea conectării anuale a RNL și a înregistrărilor nivelului mării cu sistemul de referință geocentric ETRS89 prin efectuarea în RNL de determinări cu tehnologia GNSS;
- Conectarea periodică în sistemul geocentric ETRS89 a RNL cu o stație GNSS permanentă apropiată de maregraf, prin determinarea diferenței de nivel dintre ARP antenă și RNL, pentru determinarea mișcării RNL și a terenului din imediata vecinătate a maregrafului.
Monitorizarea combinată a nivelului mării prin determinări GNSS și măsurători de nivelment geometric
Estimarea directă a oscilațiilor absolute ale nivelului mării, într-un cadru de referință stabil se efectuează utilizând tehnologia GNSS în combinație cu măsurătorile de nivelment de precizie și măsurătorile gravimetrice relative.
Această tehnică de monitorizare utilizează trei metode principale:
a) Montarea fizică a unei antene a unei stații GNSS permanente sau a unui receptor GNSS pe structura unui maregraf astfel încât să asigure urmărirea mișcării acesteia în timp concomitent cu mișcarea senzorului maregrafului la nivelul apei;
b) Efectuarea unei legături, prin nivelment geometric de precizie, între senzorul maregrafului la nivelul apei și punctul de referință al antenei (ARP), stația GNSS permanentă sau receptorul GNSS (fig. 3);
 image001
 Fig. 1. Diagrama schematică a monitorizării combinate a nivelului mării prin determinări GNSS și măsurători de nivelment geometric de precizie
c) Efectuarea unei legături, prin nivelment geometric de precizie, dintre senzorul maregrafului la nivelul apei și reper de nivelment de legătură din aproprierea maregrafului (fig. 2), executând în același timp o determinare GNSS pe această marcă, prelucrată cu ajutorul stației/stațiilor GNSS permanente din jurul maregrafului.
 image003
Fig. 2. Efectuarea legăturii prin nivelment geometric de precizie dintre senzorul maregrafului și reperul de nivelment de legătură din aproprierea maregrafului
 
Scop
Pentru îndeplinirea măsurii HB. 13 din Planul Strategic Instituţional aprobat prin Ordinul nr. 763/16.05.2014 al Ministrului Dezvoltării Regionale şi Administraţiei Publice privind reabilitarea şi modernizarea Reţelei Geodezice Naţionale de nivelment de precizie prin determinarea unui cvasigeoid pentru zona României, în conformitate cu strategia Centrului Național de Cartografie (CNC) și având în vedere recomandările subcomisiei EUREF din cadrul Asociaţiei Internaţionale de Geodezie referitoare la îmbunătăţirea cvasigeoidului european prin determinări gravimetrice, de nivelment geometric şi GNSS, CNC a realizat pentru 13 județe, în perioada 2016-2019, proiectul “Determinarea unui cvasigeoid pentru zona României”.
Proiectul are ca scop generarea unui cvasigeoid gravimetric pe teritoriul întregii ţări prin implementarea şi experimentarea noilor tehnologii geo-gravimetrice, urmărind îmbunătăţirea gridului de transformare pe altitudini, contribuind la îmbunătăţirea modelului digital al terenului și ortofotoplanului prin intermediul cărora se actualizează TopRo 5 - suport al implementării Planului Naţional de Cadastru şi Carte Funciară și al derulării recepției lucrărilor pentru înscrierea în cartea funciară a imobilelor. O rețea geospațială 3D precisă va asigura sprijin şi control asupra aplicării tehnologiilor de vârf pentru obtinerea planurilor cadastrale în intravilanele orașelor/municipiilor în cadrul proiectelor de restituție fotogrammetrică digitală pe baza zborurilor de aerofotografiere și LiDAR.
Obiective
În cadrul proiectului, CNC va efectua măsurători gravimetrice relative în punctele rețelei gravimetrice naționale de ordinul 0, I şi II pentru transmiterea gravităţii în punctele de verificare şi control, în care s-au executat determinări de nivelment geometric și determinări GNSS, precum şi în punctele noi proiectate pentru a asigura o densitate şi o distribuţie uniformă a acestor puncte în vederea generării modelului de cvasigeoid gravimetric.
Noul model de cvasigeoid local obţinut pe baza punctelor măsurate va îmbunătăţi gridul de transformare a coordonatelor pe altitudini, asigurând trecerea de la sistemul de proiecţie Stereografic 1970 şi sistemul de altitudini normale Marea Neagră 1975 (ed. 1990) la sistemul de referinţă european ETRS89 în care este constituită reţeaua GNSS de staţii permanente a României aflată în administrarea CNC, astfel încât să fie posibilă determinarea controlată a altitudinilor prin utilizarea în cadrul ROMPOS a programului de transformare TransDatRO (publicat pe site-ul ANCPI și CNC) pe baza noului cvasigeoid introdus sub formă de grid de transformare.
De asemenea, un model de cvasigeoid gravimetric mai precis decât cvasigeoidul geometric actual, va asigura interoperabilitatea datelor spaţiale naţionale cu cele europene în cadrul Infrastructurii Naţionale pentru Informaţii Spaţiale (INIS), pentru adoptarea și implementarea standardelor europene pentru scopuri științifice și pentru rezolvarea problemelor tehnice ca suport al activităților economice.
Metoda de determinare a cvasigeoidului pentu România
Determinarea cvasigeoidului pentru România se efectuează prin bine-cunoscuta metodă „remove-compute-restore” (eliminare-calculare-restaurare).
În pasul „remove”, reprezentat de relația (1), efectele gravitaționale de lungime mare de undă a unui model geopotențial global image001(EGM08/GOCE) și efectele gravitaționale ale terenului cu frecvență înaltă image003sunt eliminate din anomaliile în aer liber image005, rezultând anomaliile gravitaționale reziduale netede image008.
       image010  (1)
Efectele gravitaționale ale terenului image003s-au calculat folosind modelul terenului residual - RTM (Forsberg & Tscherning, 1981), utilizând o suprafață de referință pe altitudine, prin filtrarea în trepte a suprafeței topografice reale (fig. 1).

image012

Fig. 1. Modelul terenului rezidual
 
În pasul „compute” se aplică integrala Stokes anomaliilor gravitaționale reziduale image007 pentru a genera anomalia reziduală a altitudinii image013, folosind Transformarea Fourier Rapidă („Fast Fourier Transform” - FFT). Se utilizează implementarea funcției Stokes modificată (Forsberg, 2002), conform relației 2, prin care se elimină efectele armonicelor de lungime mare de undă rezultate prin dezvoltarea polinomelor Legendre.
         image015 (2)
Coeficientul de reducere graduală image038 controlează orice fenomen Gibbs care poate apărea prin trunchierea „bruscă” a armonicilor speciale până la gradul N.
În pasul „restore” componentele eliminate în primul pas sunt restaurate prin adunarea la anomalia reziduală a altitudinii image017a anomaliei altitudinii image019calculată dintr-un model geopotențial global (EGM08/GOCE) și a anomaliei altitudinii image021 ca urmare a efectelor terenului. Acest proces este prezentat în ecuația următoare.
     image024 image026   (3)
În final, anomaliile gravimetrice ale altitudinii obținute conform relației (3) sunt corectate pe baza anomaliilor geometrice ale altitudinii obținute în punctele de verificare și control, determinate cu tehnologia GNSS și prin măsurători de nivelment geometric.
Stadiul actual al determinării cvasigeoidului pentru România
Cvasigeoidul gravimetric este realizat integral (incluzând măsurătorile gravimetrice, determinările GNSS, măsurătorile de nivelment geometric, prelucrarea datelor și generarea cvasigeoidului) pentru județele Bihor, Arad, Hunedoara, Cluj, Alba, Mureș, Sibiu, Harghita, Brașov, Covasna, Gorj, Dolj și Olt, conform situației prezentate în fig. 2.

image027

Fig. 2. Progresul determinării cvasigeoidului gravimetric pentru România
Testarea cvasigeoidului s-a efectuat prin calcularea și analiza diferențelor anomaliilor altitudinii image029folosind relația (4)
     image031 image033  (4)
în care image035este anomalia geometrică a altitudinii calculată în punctele de verificare și control, iar image034este anomalia gravimetrică a altitudinii calculată în aceleași puncte. Situația statistică a diferențelor anomaliilor altitudinii image030este prezentată în tabelul 1.
Tabelul 1. Situația statistică a diferenețelor dintre anomaliile geometrice ale altitudinii și anomaliile gravimetrice ale altitudinii
Date
Medie
[m]
Ab. Standard
[m]
Minim
[m]
Maxim
[m]
1230 puncte de verificare și control
-0.003
0.030
-0.164
0.167
Precizia de interpolare a punctelor noi din gridul cu noul cvasigeoid gravimetric depinde de distribuția punctelor gravimetrice și a punctelor de verificare și control, de precizia de determinare a acestor puncte prin măsurători gravimetrice, cu tehnologia GNSS și prin măsurători de nivelment geometric, de precizia celorlalte date intermediare utilizate la generarea cvsigeoidului, precum și de precizia de interpolare a punctelor de verificare și control. Se estimează că, pentru județele ilustrate în fig. 2 cu noul cvasigeoid gravimetric, precizia medie de transformare a punctelor noi este în jur de ±10-12 cm.
Scop
Având în vedere atribuțiile Centrului Național de Cartografie specificate în Ordinul Directorului General nr. 890/2015 și publicat în Monitorul Oficial Partea I, nr. 657 din 31/08/2015, conform:
• art. 12 lit c): “realizarea și întreținerea hărților oficiale ale României în format analogic și digital”;
• art. 12 lit p): “editarea hărților la diverse scări pentru întreg teritoriul național, multiplicarea de planuri și hărți, precum și executarea de alte produse cartografice derivate”
a apărut necesitatea realizării unor produse noi ca urmare a dezvoltării tehnologiilor digitale, a proceselor de realizare a hărţilor şi a echipamentelor de multiplicare.
Obiectiv
Proiectul are ca obiectiv obţinerea hărţilor municipiilor reşedinţă de judeţ.
Realizarea şi actualizarea permanentă a acestor hărţi este indicată în contextul dinamicii accentuate şi a fenomenului de expansiune urbană caracteristice acestor areale.
Hărţile municipiilor pot fi utilizate atât de administraţiile locale pentru gestionarea şi aplicarea diferitelor programe de planificare cât şi de alte tipuri de utilizatori.
Descriere
Proiectul va avea ca sursă principală de informații baza de date TopRO5 şi va fi realizat pentru scări cuprinse în intervalul 1:7.500 şi 1:15.000, în funcţie de dimensiunile municipiilor.
Scop
Având în vedere atribuțiile Centrului Național de Cartografie specificate în Ordinul Directorului General nr. 890/2015 și publicat în Monitorul Oficial Partea I, nr. 657 din 31/08/2015, conform:
• art. 12 lit c): “realizarea și întreținerea hărților oficiale ale României în format analogic și digital”;
• art. 12 lit p): “editarea hărților la diverse scări pentru întreg teritoriul național, multiplicarea de planuri și hărți, precum și executarea de alte produse cartografice derivate”
a apărut necesitatea realizării unor produse noi cartografice ca urmare a dezvoltării tehnologiilor digitale, a proceselor de realizare a hărţilor şi a echipamentelor de multiplicare.
Obiectiv
Proiectul şi-a propus realizarea unui produs cartografic actualizat al judeţelor României la scara 1:100.000
Descriere
Proiectul a avut ca sursă principală de informații baza de date TopRO5 şi hărţile pliante la scara 1:100.000 pe nomenclatură Gauss.
Au fost obţinute astfel 41 de hărţi de perete la scara 1:100.000 pentru fiecare judeţ al României, în câte 2 variante:
• harta fizico-administrativă
• harta administrativă
Scop
Având în vedere atribuțiile Centrului Național de Cartografie specificate în Ordinul Directorului General nr. 890/2015 și publicat în Monitorul Oficial Partea I, nr. 657 din 31/08/2015, conform:
• art. 12 lit c): “realizarea și întreținerea hărților oficiale ale României în format analogic și digital”;
• art. 12 lit p): “editarea hărților la diverse scări pentru întreg teritoriul național, multiplicarea de planuri și hărți, precum și executarea de alte produse cartografice derivate”
a apărut necesitatea realizării unui nou Atlas de semne convenţionale ca urmare a dezvoltării tehnologiilor digitale şi a proceselor de realizare a hărţilo
Obiectiv
Atlasul de semne convenţionale înlocuieşte vechiul atlas şi cuprinde semnele convenţionale utilizate la întocmirea hărţilor topografice la scările 1:25.000, 1:50.000 şi 1:100.000 în mediul digital şi este elaborat pentru asigurarea unei uniformităţi în ceea ce priveşte modalităţile de reprezentare ale obiectelor de pe teren în cadrul hărţilor topografice
Descriere
Atlasul conţine:
• Denumirea semnului convenţional şi codul de culoare CMYK;
• Comentarii privind caracteristicile obiectelor reprezentate prin semnul convenţional;
• Simbolul şi dimensiunile acestuia în cadrul fiecărei scări;
• Tipul şi dimensiunea scrierii în hartă;
Atlasul este elaborat în cadrul Centrului Naţional de Cartografie, ediţia 2018 şi la întocmirea acestuia s-a avut în vedere modul de întocmire al hărţilor în mediul digital şi evoluţia platformelor geoinformatice.
În acest contex, la realizarea lui au fost utilizate mai multe surse de informare naţionale şi internaţionale. S-a întreprins o documentare şi au fost studiate:
• Atlasul de semne convenţionale pentru hărţile topografice la scările 1:25.000, 1:50.000, 1:100.000 şi 1:200.000 din 1966 realizat de Direcţia Topografică Militară,
• Atlasul de semne convenţionale pentru hărţile cadastrale la scările 1:25.000, 1:50.000 şi 1:100.000 din 1989 realizat de Institutul de Geodezie, Forogrammetrie, Cartografie şi Organizarea Teritoriului,
• Rezultatele proiectului european Land Administration Knowledge Improvement – LAKI (Îmbunătățirea cunoștințelor de administrare a terenurilor) activitatea 4 – Strategie pentru Producția Cartografică, desfășurat în 2012,
• Specificaţii tehnice pentru realizarea hărţilor topografice cât şi hărţi topografice realizate în alte ţări precum Polonia, Franţa, Austria, Marea Britanie, Croaţia, etc.
Prezentul atlas reprezintă şi o documentare a elementelor şi semnelor convenţionale utilizate la realizarea hărţilor topografice in mediu digital de către Centrul Naţional de Cartografie precum şi a bibliotecii digitale de semne convenţionale pentru a fi utilizate în cadrul platformelor geoinformaţionale de realizare a hărţilor în fişier format style.

Descarcă Atlas de semne convenționale pentru hărțile topografice la scările 1:25 000, 1:50 000 și 1:100 000

Scop
Având în vedere atribuțiile Centrului Național de Cartografie specificate în Ordinul Directorului General nr. 890/2015 și publicat în Monitorul Oficial Partea I, nr. 657 din 31/08/2015, conform:
• art. 12 lit c): “realizarea și întreținerea hărților oficiale ale României în format analogic și digital”;
• art. 12 lit p): “editarea hărților la diverse scări pentru întreg teritoriul național, multiplicarea de planuri și hărți, precum și executarea de alte produse cartografice derivate”
a apărut necesitatea realizării unor produse noi cartografice ca urmare a dezvoltării tehnologiilor digitale, a proceselor de realizare a hărţilor şi a echipamentelor de multiplicare.
Obiectiv
Proiectul şi-a propus Realizarea produselor cartografice hărți pliante la scara 1:100.000 pe nomenclatură Gauss prin intermediul noilor tehnologii GIS, cu ajutorul cărora au fost introduse metodologii noi de lucru utilizate la nivel internaţional.
Descriere
Proiectul a avut ca sursă principală de informații baza de date TopRO5 şi hărţile pliante la scara 1:50.000 pe nomenclatură Gauss şi s-a desfășoarat în trei etape:
• generalizarea modelului care a cuprins procese de selecție, simplificare și transformare de geometrii a datelor din TopRO5 și hărţile pliante la scara 1:50.000 pe nomenclatură Gauss în funcție de dimensiunile minime pe care trebuie să le îndeplinească elementele cuprinse în hartă
• generalizarea cartografică care a cuprins simbolizarea elementelor conform atlasului de semne convenţionale și dislocarea acestora în funcție de relațiile dintre elemente și amplasarea textului
• designul foii de hartă cuprinde:
- Informatiile din interiorul trapezelor translatate dinamic în funcţie de nomenclatura trapezului ;
- Datele din extra-cadru sunt de asemeni generate dinamic pentru fiecare trapez în parte.
• Întreaga ţară este acoperită de 204 foi de hartă având fiecare denumirea nomenclaturii foilor de hartă Gauss scara 1:100.000.
Scop
Având în vedere atribuțiile Centrului Național de Cartografie specificate în Ordinul Directorului General nr. 890/2015 și publicat în Monitorul Oficial Partea I, nr. 657 din 31/08/2015, conform:
• art. 12 lit c): “realizarea și întreținerea hărților oficiale ale României în format analogic și digital”;
• art. 12 lit p): “editarea hărților la diverse scări pentru întreg teritoriul național, multiplicarea de planuri și hărți, precum și executarea de alte produse cartografice derivate” a apărut necesitatea realizării unor produse noi ca urmare a dezvoltării tehnologiilor digitale, a proceselor de realizare a hărţilor şi a echipamentelor de multiplicare.
Obiectiv
Proiectul şi-a propus refacerea vechilor hărţii cadastrale la scara 1:50.000 pe nomenclatura Gauss prin intermediul noilor tehnologii GIS, cu ajutorul cărora au fost introduse metodologii noi de lucru utilizate la nivel internaţional.
Descriere
Proiectul a avut ca sursă principală de informații baza de date TopRO5 şi s-a desfășoarat în trei mari etape:
• generalizarea modelului care a cuprins procese de selecție, simplificare și transformare de geometrii a datelor din TopRO5 și alte surse de date în funcție de dimensiunile minime pe care trebuie să le îndeplinească elementele cuprinse în hartă
• generalizarea cartografică care a cuprins simbolizarea elementelor conform atlasului de semne convenţionale și dislocarea acestora în funcție de relațiile dintre elemente și amplasarea textului
• designul foii de hartă cuprinde:
- Informatiile din interiorul trapezelor translatate dinamic în funcţie de nomenclatura trapezului ;
- Datele din extra-cadru sunt de asemeni generate dinamic pentru fiecare trapez în parte.
• Întreaga ţară este acoperită de 737 trapeze având fiecare denumirea nomenclaturii foilor de hartă Gauss scara 1:50.000.
Scop
Pentru îndeplinirea măsurii HB.13 privind reabilitarea şi modernizarea Reţelei Geodezice Naţionale (RNG) de nivelment de precizie prin determinarea unui cvasigeoid pentru zona României, din Planul Strategic Instituţional aprobat prin Ordinul nr. 763/16.05.2014 al Ministrului Dezvoltării Regionale şi Administraţiei Publice şi în conformitate cu strategia Agenției Naționale de Cadastru și Publicitate Imobiliară (ANCPI), având în vedere recomandările subcomisiei EUREF din cadrul Asociaţiei Internaţionale de Geodezie referitoare la îmbunătăţirea cvasigeoidului european EGG97 (EGG07) prin determinări gravimetrice, de nivelment geometric şi GNSS, Centrul Național de Cartografie (CNC) va realiza în anul 2016 proiectul de execuţie “Determinarea unui cvasigeoid pentru zona României – proiect pilot în județul Bihor”.
Proiectul pilot propus are drept scop asigurarea elementelor necesare generării unui cvasigeoid local, ca parte componentă a cvasigeoidului determinat pe teritoriul întregii ţări, prin implementarea şi experimentarea noilor tehnologii geogravimetrice ce vor sta la baza realizării acestuia. Totodată, proiectul urmăreşte îmbunătăţirea gridului de transformare pe altitudini şi îmbunătăţirea modelului digital al terenului și ortofotoplanului prin intermediul căruia se actualizează TopRo 5 - suport al implementării Planului Naţional de Cadastru şi Carte Funciară (PNCCF) și al derulării recepției lucrărilor pentru înscrierea în cartea funciară a imobilelor. O rețea geospațială 3D precisă va asigura sprijin şi control asupra aplicării tehnologiilor de vârf pentru obtinerea planurilor cadastrale în intravilanele oraselor/municipiilor prevăzute în cadrul proiectului LAKI II, prin zboruri LIDAR și restituție fotogrammetrică digitală.
Obiective
În cadrul proiectului pilot, CNC va efectua măsurători gravimetrice relative în punctele gravimetrice de ordinul 1 şi 2 pentru transmiterea gravităţii la punctele noi determinate, în punctele de verificare şi control în care au fost efectuate determinări de nivelment geometric și determinări GNSS în cadrul proiectului ”Reabilitarea rețelei de nivelment de precizie ordinul I-II prin recunoaștere și determinări GPS în punctele caracteristice, compatibile cu Rețeaua Geodezică Națională de Clasă D - Etapa 2014”, precum şi în punctele noi proiectate pentru a asigura o densitate şi o distribuţie uniformă a acestor puncte în vederea generării modelului de cvasigeoid gravimetric.
În punctele noi proiectate se vor efectua şi determinări cu tehnologia GNSS prin metoda RTK. Se vor efectua măsurători GNSS statice şi de nivelment în punctele gravimetrice de ordinul 1 şi 2, asigurând astfel un control complet al anomaliei altitudinii în aceste puncte, determinată pe cale geometrică şi prin măsurători gravimetrice. Noul model de cvasigeoid local obţinut pe baza punctelor măsurate va îmbunătăţi gridul de transformare a coordonatelor pe altitudini, asigurând trecerea de la sistemul de referință Stereografic 1970, Marea Neagră 1975 (ed. 1990), la sistemul de referinţă european ETRS89 în care este constituită reţeaua GNSS de staţii permanente a României aflată în administrarea ANCPI, astfel încât să fie posibilă determinarea controlată a altitudinilor prin utilizarea în cadrul ROMPOS a programului de transformare TransDatRO (publicat pe site-ul ANCPI) pe baza noului cvasigeoid introdus sub formă de grid de transformare. De asemenea, un model de cvasigeoid gravimetric mai precis decât cvasigeoidul geometric actual, va asigura interoperabilitatea datelor spaţiale naţionale cu cele europene în cadrul Infrastructurii Naţionale pentru Informaţii Spaţiale (INIS), pentru adoptarea și implementarea standardelor europene pentru scopuri științifice și pentru rezolvarea problemelor tehnice ca suport al activităților economice.

Rețeaua Geodezică Națională GPS de Clasă C totalizează un număr de 1156 puncte, uniform distribuite la nivel de județ. Realizarea unei densităţi uniforme a punctelor din Reţeaua Geodezică Naţională GPS a impus completarea Reţelei Geodezice Naţionale GPS de Clasă A şi B, cu un sistem unitar de referinţă ETRS89 care să asigure o densitate de 1pct/50km2, prin realizarea RGN - GPS de Clasă C.
Determinările realizate pe baza tehnologiilor de poziţionare satelitare GNSS (GPS, GLONASS) furnizează rezultate (coordonate) cu precizie ridicată într-un sistem de referinţă şi coordonate specifice (WGS84 sau ETRS89). Cu toate acestea menţinerea în momentul de faţă în România, a sistemului de referinţă S42 (elipsoid Krasovski 1940) şi a planului de proiecţie Stereografic 1970, necesită realizarea unei transformări unitare de coordonate între noul sistem de referinţă utilizat în determinările GNSS (ETRS89) şi sistemul de referinţă actual.
Pentru realizarea acestei transformări, ANCPI prin Direcţia de Cadastru şi Geodezie, a propus şi realizat un algoritm modern de calcul transpus într-un soft denumit TransDat. Pentru o bună implementare a algoritmului de calcul în cadrul TransDat este necesar să se dispună de un set de puncte comune dispuse uniform pe suprafaţa de interes, cu coordonate în ambele sisteme de referinţă implicate. ANCPI dispune de setul de coordonate în sistemul naţional (Stereografic 1970) cu acoperire naţională (pe baza reţelei de triangulaţie) şi de setul de coordonate în sistem ETRS89 (pe baza măsurătorilor GNSS disponibile).
Având în vedere realizarea unor astfel de determinări GNSS pentru tot teritoriul ţǎrii, s-a solicitat efectuarea de determinări GNSS în puncte de triangulaţie pentru finalizarea implementării transformării de coordonate.
Pe baza determinărilor GNSS solicitate, se va asigura o transformare planimetrică unitară urmând să se asigure şi transformarea altimetrică unitară la un nivel de precizie necesar lucrărilor topo-geodezice. Conform programului întocmit de Direcţia de Cadastru şi Geodezie din cadrul ANCPI, s-a precizat că la nivelul întregii ţări urmează să se determine, cu ajutorul tehnologiei GPS, un număr de cca 4750 puncte uniform distribuite în teritoriu într-o reţea care să cuprindă atât puncte din triangulaţia de ord.I-IV, cât şi puncte nou materializate.
Direcţia de Cadastru şi Geodezie din cadrul ANCPI, în vederea îndeplinirii obiectivului privind dezvoltarea şi îmbunătăţirea performanţelor programului TransDat, a solicitat ca CNC, prin Serviciul Geodezie, să realizeze Proiectul “Reţeaua Geodezică Națională GPS de Clasă C” pentru judeţele: Bucureşti, Ilfov, Călăraşi, Teleorman, Caraş - Severin, Gorj, Vâlcea, Hunedoara, Bihor, Satu Mare, Maramureş, Suceava, Botoşani, Bacău şi Vaslui. Proiectul ”Reţeaua Geodezică Națională GPS de Clasă C” s-a realizat pe baza datelor oferite de lucrările de recunoaştere la teren a punctelor de triangulaţie de ordinul I-IV, acţiune realizată de Serviciul Geodezie și Cercetare-Dezvolater al CNC, în colaborare cu Oficiile de Cadastru şi Publicitate Imobiliară. Precizia de realizare a RGN - GPS de Clasă C, trebuia să respecte toleranţa de +/-3 cm în 3D şi trebuia să conţină cât mai multe puncte comune cu reţeaua de triangulaţie de ord. I-IV, puncte pe baza cărora să se asigure trecerea coordonatelor punctelor noi, determinate cu ajutorul tehnologiei GPS din sistemul de referinţă ETRS89 în sistemul naţional de proiecţie Stereografic 1970, plan de referinţă Marea Neagră 1975 (ediţia 1990).
Serviciul Geodezie şi Cercetare - Dezvoltare al CNC a finalizat proiectele Reţeaua Geodezică GPS de Clasă C pentru judeţele Bucureşti, Ilfov, Călăraşi, Teleorman, Caraş - Severin, Gorj, Vâlcea, Hunedoara, Bihor, Satu Mare, Maramureş, Suceava, Botoşani, Bacău şi Vaslui, după cum urmează: 
  • În anul 2006, prin proiectul “Realizarea modernizării reţelei geodezice naţionale GPS de Clasă C şi determinări GPS în punctele de triangulaţie de ord. I – IV” pentru municipiul Bucureşti şi în judeţul Ilfov s-au deteminat un total de 50 puncte. 
  • În anul 2007, prin proiectul ”Realizarea modernizării reţelei geodezice naţionale GPS de Clasă C şi determinări GPS în punctele de triangulaţie de ord. I – IV” pentru judeţul Bacău”, s-au deteminat un număr de 52 puncte.
  • În anul 2008 prin proiectul ”Realizarea RGN – GPS de Clasă C prin determinări GNSS în punctele de triangulaţie de ordinul I – IV” pentru 10 judeţe (Bihor, Botoşani, Caraş-Severin, Gorj, Hunedoara, Maramureş, Satu-Mare, Suceava, Teleorman şi Vâlcea), s-au deteminat un total de 397 puncte.
  • În anul 2009 prin proiectul ”Realizarea RGN – GPS de Clasă C ‐ Determinarea unui (cvasi)geoid prin determinări GNSS în punctele de triangulaţie de ordinul I‐IV” în 2 judeţe (Călăraşi şi Vaslui), s‐au deteminat un număr de 75 puncte. 
Având în vedere că realizarea determinări GNSS de clasă C pentru restul teritoriului, cu mijloacele de care dispune ANCPI prin CNGCFT, ar fi necesitat un timp prea îndelungat, iar implementarea transformării de coordonate era o cerinţă stringentă, s‐au efectuat determinări GNSS în punctele de triangulaţie, prin contracte cu persoane juridice autorizate, pentru completarea măsurătorilor din RGN – GPS de Clasă C în 27 judeţe şi finalizarea implementării transformării de coordonate. Pentru judeţele Dâmboviţa, Brăila, Arad, Timiş, Mehedinţi, Dolj, Olt, Argeş, Giurgiu, Ialomiţa, Constanţa, Tulcea, Prahova, Buzău, Alba, Sibiu, Braşov, Covasna, Vrancea, Galaţi, Cluj, Sălaj, Bistriţa ‐ Năsăud, Mureş, Harghita, Neamţ şi Iaşi, ANCPI prin Direcţia de Cadastru şi Geodezie (DCG) a realizat în anul 2010 contracte cu persoane autorizate pentru măsurători GPS în reţeaua de puncte comune de triangulaţie, compatibile cu reţeaua GPS de Clasă C.
Proiectul a avut ca scop modernizarea Reţelei Geodezice Naţionale GPS, asigurarea numărului minim de puncte necesare dezvoltării reţelelor de sprijin şi îndesire determinate prin tehnologie GPS la nivel de judeţ și sigurarea unor transformări optime, în parametrii de precizie ai RGN în sistem Stereografic 70, prin aplicarea programul de calcul TransDat. Prin acest proiect s‐a dorit soluţionarea lipsei punctelor geodezice pentru realizarea documentaţiilor topografice şi cadastrale destinate înscrierii în Cartea Funciară; dezvoltarea proiectelor de urbanism şi amenajarea teritoriului, consolidării pieţei imobiliare şi proiectelor de investiţii; asigurarea unui control strict al poziţionării imobilelor într‐un sistem omogen (E‐Terra) care să asigure precizie suficientă amplasamentului terenului pentru eliminarea suprapunerilor cât și stabilirea unor corecţii unitare de îmbunătăţire a preciziei RGN pentru asigurarea punctelor de bază la realizarea şi actualizarea hărţii oficiale a teritoriului naţional.
La finalizarea contractelor, au fost determinate un număr de 582 puncte. Pentru executarea observaţiilor GPS în RGN de Clasă C, Serviciul Geodezie şi Cercetare ‐ Dezvoltare a folosit metoda de măsurare statică cu receptoare Trimble 4000SSE ce fac parte din clasa geodezică (L1, L2). Receptoarele GPS au fost setate cu masca de elevaţie la 15º iar intervalul de înregistrare a fost setat la 10s. Înălţimea antenei a fost măsurată atât la ARP cât şi cea înclinată, la începutul şi la sfârşitul observaţiilor, iar valoarea medie înclinată a fost introdusă în receptor, pentru fiecare punct. Punctele au fost staţionate în sesiuni independente de 6 ore observaţiile desfăşurându‐se în conformitate cu proiectul şi graficul de sesiuni avizat de DGC. Pentru toate punctele observate, ce fac parte din acest proiect, s‐au întocmit descrieri topografice, schemele obstrucţiilor și formularul observaţiilor GPS. Prelucrarea observaţiilor GPS s‐au procesat cu suita de softuri Trimble, căt și cu Leica Geomatiks Office. Pentru prelucrare au fost folosite efemeride precise, ce au fost descărcate de pe site‐ul http://igscb.jpl.nasa.gov/. În prima fază au fost calculaţi vectorii intre toate punctele, inclusiv între staţiile permanente folosite apoi reţeaua a fost compensată ca o reţea liberă formată din totalul punctelor măsurate și staţiile permanente. În faza următoare, rețeaua a fost compensată ca o reţea constrânsă pe staţiile GPS permanente de Clasă A, precum şi pe punctele vechi din RGN‐GPS de Clasă B, în sistemul de coordonate ETRS89.
Pentru verificarea situaţiei coordonatelor punctelor de triangulaţie din reţeaua de Ordinul I‐IV, au fost transformate în planul de proiecţie Stereografic 1970, plan de referinţă Marea Neagră 1975 toate puncte de Clasă B şi C. Transformarea a fost făcută cu ajutorul software‐ului Leica Geo Office şi au fost folosite doua metode. Modelul de transformare a fost ales Bursa Wolf. Poziţia şi cota sunt separate în două componente. Mai întâi se face o transformare 2D pentru determinarea poziţiei şi apoi este folosită interpolarea pentru determinarea cotei. Pe baza punctelor cu coordonate comune, de Clasă B şi C, precum şi a punctelor din judeţele limitrofe s‐au format grupuri de puncte cu coordonate comune. În felul acesta s‐au determinat seturi de parametrii de transformare, cu ajutorul cărora s‐au obţinut coordonatele rectangulare plane şi cotele pentru punctele reţelei.
Mai multe informaţii cu privire la prelucrarea observaţiilor GPS se pot regăsi în cadrul proiectelor Centrului Național de Cartografie (fost CNGCFT) ‐ ”Reţeaua Geodezică Naţională GPS de Clasă C”, realizate de către Serviciul Geodezie şi Cercetare – Dezvoltare. Pentru celelalte 27 judeţe pentru s‐au realizat măsurători GPS compatibile cu RGN‐GPS de Clasă C de către persoane juridice autorizate, conform contractelor încheiate de ANCPI în anul 2010, se regăsesc informaţii suplimentare în cadrul Direcţiei de Cadastru şi Geodezie (DCG) – ANCPI care a recepționat și introdus în baza de date a Fondului Național Geodezic (FNG) aceste lucrări.
Prin realizarea Reţelei Geodezice Naţionale GPS de Clasă C la nivelul întregului teritoriu naţional s‐a obţinut distribuţia uniformă pe judeţ a punctelor din RGN ‐ GPS de Clasă C, densitatea suficientă a punctelor din RGN ‐ GPS de Clasă C pentru a asigura punctele de dezvoltare a reţelelor de sprijin şi îndesire, necesare dezvoltării lucrărilor topografice şi de cadastru, posibilitatea utilizării reţelei RGN‐GPS de Clasă C pentru modernizarea Reţelei Geodezice Naţionale de Nivelment de Precizie şi pentru Determinarea ondulaţiei (cvasi)geoidului la nivel naţional și asigurarea întreţinerii periodice, a mentenanţei fizice şi gestiunii facile la nivelul fiecărui judeţ a reţelei RGN ‐ GPS de Clasă C.
Pagina 1 din 2

Căutare

Contact

  • Bd.Expozitiei, nr.1A, Sector 1, Bucuresti
  • +40 21 224 16 21
  • +40 21 224 39 67 (ROMPOS)
  • cnc@ancpi.ro
  • Vezi harta